skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tilton, Nils"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by applications to fluid flows with conjugate heat transfer and electrokinetic effects, we propose a direct forcing immersed boundary method for simulating general, discontinuous, Dirichlet and Robin conditions at the interface between two materials. In comparison to existing methods, our approach uses smaller stencils and accommodates complex geometries with sharp corners. The method is built on the concept of a “forcing pair,” defined as two grid points that are adjacent to each other, but on opposite sides of an interface. For 2D problems this approach can simultaneously enforce discontinuous Dirichlet and Robin conditions using a six-point stencil at one of the forcing points, and a 12-point stencil at the other. In comparison, prior work requires up to 14-point stencils at both points. We also propose two methods of accommodating surfaces with sharp corners. The first locally reduces stencils in sharp corners. The second uses the signed distance function to globally smooth all corners on a surface. The smoothing is defined to recover the actual corners as the grid is refined. We verify second-order spatial accuracy of our proposed methods by comparing to manufactured solutions to the Poisson equation with challenging dis- continuous fields across immersed surfaces. Next, to explore the performance of our method for simulating fluid flows with conjugate heat transport, we couple our method to the incompressible Navier–Stokes and continuity equations using a finite-volume projection method. We verify the spatial-temporal accuracy of the solver using manufactured solutions and an analytical solution for circular Couette flow with conjugate heat transfer. Finally, to demonstrate that our method can model moving surfaces, we simulate fluid flow and conjugate heat transport between a stationary cylinder and a rotating ellipse or square. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. We present a novel method for simulating unsteady, variable density, fluid flows in membrane desalination systems. By assuming the density varies only with concentration and temperature, the scheme decouples the solution of the governing equations into two sequential blocks. The first solves the governing equations for the temperature and concentration fields, which are used to compute all thermophysical properties. The second block solves the conservation of mass and momentum equations for the velocity and pressure. We show that this is computationally more efficient than schemes that iterate over the full coupled equations in one block. We verify that the method achieves second-order spatial–temporal accuracy, and we use the method to investigate buoyancy-driven convection in a desalination process called vacuum membrane distillation. Specifically, we show that with gravity properly oriented, variations in temperature and concentration can trigger a double-diffusive instability that enhances mixing and improves water recovery. We also show that the instability can be strengthened by providing external heating. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. NA (Ed.)
    Membrane distillation (MD) is a thermally-driven desalination process that can treat hypersaline brines. Considerable MD literature has focused on mitigating temperature and concentration polarization. This literature largely neglects that temperature and concentration polarization increase the feed density near the membrane. With gravity properly oriented, this increase in density could trigger buoyancy-driven convection and increase permeate production. Convection could also be strengthened by heating the feed channel wall opposite the membrane. To investigate that possibility, we perform a series of experiments using a plate-and-frame direct contact MD system with an active membrane area of 300 cm2 and a feed channel wall heated using a resistive heater. The experiments measure the average transmembrane permeate flux for two gravitational orientations, feed Reynolds numbers between 128 and 1128, and wall heat fluxes up to 12 kW/m2. The results confirm that with gravity properly oriented, wall-heating can trigger buoyancy-driven convection for a wide range of feed Reynolds numbers, and increase permeate production between roughly 20 and 130 %. We estimate, however, that at high Reynolds numbers (𝑅𝑒 > 800), more than 70 % of the wall heat is carried out of the MD system by the feed flow, without contributing to permeate production. This suggests the need for longer membranes and heat recovery steps in any future practical implementation. 
    more » « less
  4. We use linear stability analysis and direct numerical simulations to investigate the coupling between centrifugal instabilities, solute transport and osmotic pressure in a Taylor–Couette configuration that models rotating dynamic filtration devices. The geometry consists of a Taylor–Couette cell with a superimposed radial throughflow of solvent across two semi-permeable cylinders. Both cylinders totally reject the solute, inducing the build-up of a concentration boundary layer. The solute retroacts on the velocity field via the osmotic pressure associated with the concentration differences across the semi-permeable cylinders. Our results show that the presence of osmotic pressure strongly alters the dynamics of the centrifugal instabilities and substantially reduces the critical conditions above which Taylor vortices are observed. It is also found that this enhancement of the hydrodynamic instabilities eventually plateaus as the osmotic pressure is further increased. We propose a mechanism to explain how osmosis and instabilities cooperate and develop an analytical criterion to bound the parameter range for which osmosis fosters the hydrodynamic instabilities. 
    more » « less